Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
उत्तर
`(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Applying componendo and dividendo
`(3x + sqrt(9x^2 - 5) + 3x - sqrt(9x^2 - 5))/(3x + sqrt(9x^2 - 5) - 3x + sqrt(9x^2 - 5)) = (5 + 1)/(5 - 1)`
`(6x)/(2sqrt(9x^2 - 5)) = (6)/(4)`
⇒ `(3x)/sqrt(9x^2 - 5) = (3)/(2)`
Squaring both sides
`(9x^2)/(9x^2 - 5) = (9)/(4)`
⇒ 81x2 – 45 = 36x2
⇒ 81x2 – 36x2 = 45
⇒ 45x2 = 45
⇒ x2 = 1
⇒ x = ± 1
∴ x = 1, –1
Check :
(i) When x = 1, then in the given equation
`(3 xx 1 + sqrt(9 xx 1 - 5))/(3 xx 1 - sqrt(9 xx 1 - 5)`
= `(3 + sqrt(4))/( 3 - sqrt4)`
= `(3 + 2)/(3 - 2)`
= `(5)/(1)`
which is given
∴ x = 1
(ii) When x = –1, then
`(3(-1) + sqrt(9(-1)^2 - 5))/(3(-1) - sqrt(9(-1)^2 - 5)`
= `(-3 + sqrt(9 - 5))/(-3 - sqrt(9 - 5)`
= `(-3 + sqrt(4))/(-3 - sqrt(4)`
= `(-3 + 2)/(-3 - 2)`
= `(-1)/(-5)`
= `(1)/(5) ≠ (5)/(1)`
∴ x = –1 is not its solution.
Hence x = 1.
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.