Advertisements
Advertisements
प्रश्न
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
उत्तर
We have
`y/(1) = ((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)`
Applying componendo and dividendo
`(y + 1)/(y - 1) = ((p + 1)^(1/3) + (p - 1)^(1/3) + (p + 1)^(1/3) - (p - 1)^(1/3))/((p + 1)^(1/3) + (p - 1)^(1/3) - (p + 1)^(1/3) + (p - 1)^(1 /3)`
⇒ `(y + 1)/(y - 1) = (2(p + 1)^(1/3))/(2(p - 1)^(1/3))`
Cubing both side
`((y + 1)^3)/((y - 1)^3) = (p + 1)/(p - 1)`
⇒ `(y^3 + 1 + 3y^2 + 3y)/(y^3 - 1 - 3y^2 + 3y) = (p + 1)/(p - 1)`
Again applying componendo and dividendo
⇒ `(y^3 + 1 + 3y^2 + 3y + y^3 - 1 - 3y^2 + 3y)/(y^3 + 1 + 3y^2 + 3y - y^3 + 1 3y^2 - 3y)`
= `(p + 1 + p - 1)/(p + 1 - p + 1)`
⇒ `(2y^3 + 6y)/(6y^2 + 2) = (2p)/(2)`
⇒ `(2(y^3 + 3y))/(2(3y^2 + 1)) = p`
⇒ y3 + 3y = 3py2 + p
⇒ y3 - 3py2 + 3y - p = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`