Advertisements
Advertisements
प्रश्न
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
उत्तर
We have
`y/(1) = ((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)`
Applying componendo and dividendo
`(y + 1)/(y - 1) = ((p + 1)^(1/3) + (p - 1)^(1/3) + (p + 1)^(1/3) - (p - 1)^(1/3))/((p + 1)^(1/3) + (p - 1)^(1/3) - (p + 1)^(1/3) + (p - 1)^(1 /3)`
⇒ `(y + 1)/(y - 1) = (2(p + 1)^(1/3))/(2(p - 1)^(1/3))`
Cubing both side
`((y + 1)^3)/((y - 1)^3) = (p + 1)/(p - 1)`
⇒ `(y^3 + 1 + 3y^2 + 3y)/(y^3 - 1 - 3y^2 + 3y) = (p + 1)/(p - 1)`
Again applying componendo and dividendo
⇒ `(y^3 + 1 + 3y^2 + 3y + y^3 - 1 - 3y^2 + 3y)/(y^3 + 1 + 3y^2 + 3y - y^3 + 1 3y^2 - 3y)`
= `(p + 1 + p - 1)/(p + 1 - p + 1)`
⇒ `(2y^3 + 6y)/(6y^2 + 2) = (2p)/(2)`
⇒ `(2(y^3 + 3y))/(2(3y^2 + 1)) = p`
⇒ y3 + 3y = 3py2 + p
⇒ y3 - 3py2 + 3y - p = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`