Advertisements
Advertisements
प्रश्न
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
उत्तर
`16((a - x)/(a + x))^3 = (a + x)/(a - x)`
`\implies ((a + x)/(a - x)) xx ((a + x)/(a - x))^3 = 16`
`\implies ((a + x)/(a - x))^4 = 16 = (±2)^4`
`\implies (a + x)/(a - x) = ± 2`
When `(a + x)/(a - x) = 2/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
`\implies (2a)/(2x) = 3/1`
`\implies a/x = 3/1`
`\implies` 3x = a
∴ `x = a/3`
When `(a + x)/(a - x) = (-2)/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
`\implies (2a)/(2x) = (-1)/(-3)`
`\implies a/x = 1/3`
`\implies` x = 3a
Hence `x = a/3, 3a`
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.