Advertisements
Advertisements
प्रश्न
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
उत्तर
`16((a - x)/(a + x))^3 = (a + x)/(a - x)`
`\implies ((a + x)/(a - x)) xx ((a + x)/(a - x))^3 = 16`
`\implies ((a + x)/(a - x))^4 = 16 = (±2)^4`
`\implies (a + x)/(a - x) = ± 2`
When `(a + x)/(a - x) = 2/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
`\implies (2a)/(2x) = 3/1`
`\implies a/x = 3/1`
`\implies` 3x = a
∴ `x = a/3`
When `(a + x)/(a - x) = (-2)/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
`\implies (2a)/(2x) = (-1)/(-3)`
`\implies a/x = 1/3`
`\implies` x = 3a
Hence `x = a/3, 3a`
APPEARS IN
संबंधित प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = y, the value of (3x + y) : (5x – 3y) is ______.