Advertisements
Advertisements
प्रश्न
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
उत्तर
x = `(2a + b)/"a + b"`
⇒ `x/a = (2b)/"a + b"`
Applying componendo and dividendo,
`"x + a"/"x - a" = (2b + a + b)/(2b - a - b) = (3b + a)/"b - a"` ...(i)
Again `x/b = (2a)/"a + b"`
Applying componendo and dividendo,
`"x + b"/"x - b" = (2a + a + b)/(2a - a - b) = (3a + b)/"a - b"` ...(ii)
Adding (i) and (ii)
`"x + a"/"x - a" + "x + b"/"x - b"`
= `(3b + a)/"b - a" + (3a + b)/"a - b"`
= `-(a + 3b)/"a - b" + (3a + b)/"a - b"`
= `(-a - 3b + 3a + b)/"a - b"`
= `(2a - 2b)/"a - b"`
= `(2(a - b))/"a - b"`
= 2.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.