Advertisements
Advertisements
Question
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Solution
x = `(2a + b)/"a + b"`
⇒ `x/a = (2b)/"a + b"`
Applying componendo and dividendo,
`"x + a"/"x - a" = (2b + a + b)/(2b - a - b) = (3b + a)/"b - a"` ...(i)
Again `x/b = (2a)/"a + b"`
Applying componendo and dividendo,
`"x + b"/"x - b" = (2a + a + b)/(2a - a - b) = (3a + b)/"a - b"` ...(ii)
Adding (i) and (ii)
`"x + a"/"x - a" + "x + b"/"x - b"`
= `(3b + a)/"b - a" + (3a + b)/"a - b"`
= `-(a + 3b)/"a - b" + (3a + b)/"a - b"`
= `(-a - 3b + 3a + b)/"a - b"`
= `(2a - 2b)/"a - b"`
= `(2(a - b))/"a - b"`
= 2.
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.