Advertisements
Advertisements
Question
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
Solution
We have
a: b = c : d
`a/b = c/d`
⇒ `(2a)/(7b) = (2c)/(7d) ...["Multiplying both side" 2/7]`
`["Using componendo and dividendo"]`
`(2a + 7b)/(2a - 7b) = (2c + 7d)/(2c - 7d)` ...[By cross multiplication]
⇒ (2a - 7b) (2c + 7d) = (2a + 7b) (2c - 7d).
Hence proved.
APPEARS IN
RELATED QUESTIONS
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`