Advertisements
Advertisements
Question
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
Solution
x = `(2mab)/(a + b)`
⇒ `x/(ma) + (2b)/(a + b)`
Applying componendo and dividendo
`(x + ma)/(x - ma)`
= `(2b + a + b)/(2b - a - b)`
= `(3b + a)/(b - a)` ...(i)
Again `x/(mb)`
= `(2a)/(a + b)`
Applying componendo and dividendo,
`(x + mb)/(x - mb)`
= `(2a + a + b)/(2a - a- b)`
= `(3a + b)/(a - b)` ...(ii)
Adding (i) and (ii)
`(x + ma)/(x - ma) + (x + mb)/(x - mb)`
= `(3b + a)/(b - a) + (3a + b)/(a - b)`
= `-(3b + a)/(a - b) + (3a + b)/(a - b)`
= `(-3b - a + 3a + b)/(a - b)`
= `(2a - 2b)/(a - b)`
= `(2(a - b))/(a - b)`
= 2.
APPEARS IN
RELATED QUESTIONS
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.