Advertisements
Advertisements
Question
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Solution
x = `"pab"/(a + b)`
⇒ `x/(pa) + b/(a + b)`
Applying componendo and dividendo
`(x + pa)/(x - pa)`
= `(b + a + b)/(b - a - b)`
= `(a + 2b)/(-a)` ....(i)
Again, `x/(pb)`
= `a/(a + b)`
Applying componendo and dividendo,
`(x + pb)/(x - pb)`
= `(a + a + b)/(a - a - b)`
= `(2a + b)/(-b)` ....(ii)
L.H.S. = `(x + pa)/(x - pa) - (x + pb)/(x - pb)`
= `(a + 2b)/(-a) - (2a + b)/(-b)`
= `(a + 2b)/(-a) + (2a + b)/(b)`
= `(ab + 2b^2 2a^2 - ab)/(-ab)`
= `(2b^2 - 2a^2)/(-ab)`
= `(-2a^2 + 2b^2)/(-ab)`
= `(-2(a^2 - b^2))/(-ab)`
= `(2(a^2 - b^2))/(ab)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.