Advertisements
Advertisements
प्रश्न
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
उत्तर
x = `"pab"/(a + b)`
⇒ `x/(pa) + b/(a + b)`
Applying componendo and dividendo
`(x + pa)/(x - pa)`
= `(b + a + b)/(b - a - b)`
= `(a + 2b)/(-a)` ....(i)
Again, `x/(pb)`
= `a/(a + b)`
Applying componendo and dividendo,
`(x + pb)/(x - pb)`
= `(a + a + b)/(a - a - b)`
= `(2a + b)/(-b)` ....(ii)
L.H.S. = `(x + pa)/(x - pa) - (x + pb)/(x - pb)`
= `(a + 2b)/(-a) - (2a + b)/(-b)`
= `(a + 2b)/(-a) + (2a + b)/(b)`
= `(ab + 2b^2 2a^2 - ab)/(-ab)`
= `(2b^2 - 2a^2)/(-ab)`
= `(-2a^2 + 2b^2)/(-ab)`
= `(-2(a^2 - b^2))/(-ab)`
= `(2(a^2 - b^2))/(ab)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.