Advertisements
Advertisements
प्रश्न
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
उत्तर
`(1 - px)/(1 + px) = sqrt((1 - qx)/(1 + qx)) ..."(Squaring both sides")`
`((1 - px)/(1 + px))^2 = (1 - qx)/(1 + qx)`
⇒ `(1 +p^2x^2 - 2px)/(1 + p^2x^2 + 2px) = (1 - qx)/(1 + qx)`
Applying componendo and dividendo
`(1 + p^2x^2 - 2px + 1 + p^2x^2 + 2px)/(1 + p^2x^2 - 2px - 1 - p^2x^2 - 2px) = (1 - qx + 1 + qx)/(1 - qx - 1 - qx)`
⇒ `(2(1 + p^2x^2))/(2(-2px)) = (2)/(-2px)`
⇒ `(1 + p^2x^2)/(2px) = (1)/(qx)`
⇒ qx (1 + p2x2) = 2px
⇒ x(p2qx2 - 2p + q) = 0
Either x = 0
or
p2qx2 = 2p - q
x2 = `(2p - q)/(p^2q)`
x = 0 or x = ±`(1)/p sqrt((2p -q)/q`.
APPEARS IN
संबंधित प्रश्न
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.