Advertisements
Advertisements
प्रश्न
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
उत्तर
`(2sqrt(6))/(sqrt(3) + sqrt(2)`
or
x = `(2 xx sqrt(3) xx sqrt(2))/(sqrt(3) + sqrt(2)`
⇒ `x/sqrt(3) = (2sqrt(2))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(3))/(x - sqrt(3)) = (2sqrt(2) + sqrt(3) + sqrt(2))/(2sqrt(2) - sqrt(3) - sqrt(2)`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
`(x + sqrt(3))/(x - sqrt(3)) = (3sqrt(2) + sqrt(3))/(-(sqrt(3) - sqrt(2))` ...(i)
Also `x/sqrt(2) = (2sqrt(3))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(2))/(x + sqrt(2)) = (2sqrt(3) + sqrt(3) + sqrt(2))/(2sqrt(3) - sqrt(3) - sqrt(2)`
`(x + sqrt(2))/(x - sqrt(2)) = (3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(ii)
Adding (i) and (ii)
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)) = (-3sqrt(2) - sqrt(3) + 3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)`
= `(-2sqrt(2) + 2sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/((sqrt(3) - sqrt(2))`
= 2.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
If x = y, the value of (3x + y) : (5x – 3y) is ______.