Advertisements
Advertisements
प्रश्न
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
उत्तर
`(2sqrt(6))/(sqrt(3) + sqrt(2)`
or
x = `(2 xx sqrt(3) xx sqrt(2))/(sqrt(3) + sqrt(2)`
⇒ `x/sqrt(3) = (2sqrt(2))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(3))/(x - sqrt(3)) = (2sqrt(2) + sqrt(3) + sqrt(2))/(2sqrt(2) - sqrt(3) - sqrt(2)`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
`(x + sqrt(3))/(x - sqrt(3)) = (3sqrt(2) + sqrt(3))/(-(sqrt(3) - sqrt(2))` ...(i)
Also `x/sqrt(2) = (2sqrt(3))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(2))/(x + sqrt(2)) = (2sqrt(3) + sqrt(3) + sqrt(2))/(2sqrt(3) - sqrt(3) - sqrt(2)`
`(x + sqrt(2))/(x - sqrt(2)) = (3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(ii)
Adding (i) and (ii)
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)) = (-3sqrt(2) - sqrt(3) + 3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)`
= `(-2sqrt(2) + 2sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/((sqrt(3) - sqrt(2))`
= 2.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`