Advertisements
Advertisements
Question
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
Solution
`(2sqrt(6))/(sqrt(3) + sqrt(2)`
or
x = `(2 xx sqrt(3) xx sqrt(2))/(sqrt(3) + sqrt(2)`
⇒ `x/sqrt(3) = (2sqrt(2))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(3))/(x - sqrt(3)) = (2sqrt(2) + sqrt(3) + sqrt(2))/(2sqrt(2) - sqrt(3) - sqrt(2)`
= `(3sqrt(2) + sqrt(3))/(sqrt(2) - sqrt(3)`
`(x + sqrt(3))/(x - sqrt(3)) = (3sqrt(2) + sqrt(3))/(-(sqrt(3) - sqrt(2))` ...(i)
Also `x/sqrt(2) = (2sqrt(3))/(sqrt(3) + sqrt(2)`
Applying Componendo and Dividendo
`(x + sqrt(2))/(x + sqrt(2)) = (2sqrt(3) + sqrt(3) + sqrt(2))/(2sqrt(3) - sqrt(3) - sqrt(2)`
`(x + sqrt(2))/(x - sqrt(2)) = (3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)` ...(ii)
Adding (i) and (ii)
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)) = (-3sqrt(2) - sqrt(3) + 3sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)`
= `(-2sqrt(2) + 2sqrt(3))/(sqrt(3) - sqrt(2)`
= `(2(sqrt(3) - sqrt(2)))/((sqrt(3) - sqrt(2))`
= 2.
APPEARS IN
RELATED QUESTIONS
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.