Advertisements
Advertisements
प्रश्न
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
उत्तर
Given: `x/(1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`
Applying componendo and dividendo both sides, we have
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2)`
`\implies (x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 + b^2)`
`\implies (x + 1)/(x - 1) = (sqrt(a^2 + b^2))/(sqrt(a^2 + b^2)`
Squaring both sides, we have
`\implies (x + 1)^2/(x - 1)^2 = (a^2 + b^2)/(a^2 - b^2)`
`\implies (x^2 + 1 + 2x)/(x^2 + 1 - 2x) = (a^2 + b^2)/(a^2 - b^2)`
Applying componendo and dividendo both sides, we get
`\implies (x^2 + 1 + 2x + x^2 + 1 - 2x)/(x^2 + 1 + 2x - x^2 - 1 + 2x) = (a^2 + b^2 + a^2 - b^2)/(a^2 + b^2 - a^2 + b^2)`
`\implies (2x^2 + 2)/(4x) = (2a^2)/(2b^2)`
`\implies (x^2 + 1)/(2x) = a^2/b^2`
`\implies b^2 = (2a^2x)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3