Advertisements
Advertisements
प्रश्न
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
उत्तर
(11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²)
⇒ `(11a + 13b^2)/(11a^2 - 13b^2) = (11c^2 + 13d^2)/(11c^2 - 13d^2)`
Applying componendo and dividendo
`(11a^2 + 13b^2 + 11a^2 - 13b^2)/(11a^2 + 13b^2 - 11a^2 + 13b^2) = (11c^2 + 13d^2 + 11c^2 - 13d^2)/(11c^2 + 13d^2 - 11c^2 + 13d^2)`
⇒ `(22a^2)/(26b^2) = (22c^2)/(26d^2)`
⇒ `a^2/b^2 = c^2/d^2 ...("Dividing by" 22/26)`
⇒ `a/b = c/d`
Hence a : b :: c : d.
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.