Advertisements
Advertisements
प्रश्न
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
उत्तर
(11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²)
⇒ `(11a + 13b^2)/(11a^2 - 13b^2) = (11c^2 + 13d^2)/(11c^2 - 13d^2)`
Applying componendo and dividendo
`(11a^2 + 13b^2 + 11a^2 - 13b^2)/(11a^2 + 13b^2 - 11a^2 + 13b^2) = (11c^2 + 13d^2 + 11c^2 - 13d^2)/(11c^2 + 13d^2 - 11c^2 + 13d^2)`
⇒ `(22a^2)/(26b^2) = (22c^2)/(26d^2)`
⇒ `a^2/b^2 = c^2/d^2 ...("Dividing by" 22/26)`
⇒ `a/b = c/d`
Hence a : b :: c : d.
APPEARS IN
संबंधित प्रश्न
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.