Advertisements
Advertisements
प्रश्न
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
उत्तर
7x – 15y = 4x + y
7x – 4x = y + 15y
3x = 16y
`x/y = 16/3`
`=> x^2/y^2 = 256/9`
`=> (3x^2)/(2y^2) = (768)/18 = 128/3` ...`("Multiplying both sides by" 3/2)`
`=> (3x^2 + 2y^2)/(3x^2 - 2y^2) = (128 + 3)/(128 - 3)` ...(Applying componendo and dividendo)
`=> (3x^2 + 2y^2)/(3x^2 - 2y^2) = 131/125`
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.