Advertisements
Advertisements
प्रश्न
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
उत्तर
x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (root(3)(a + 1) + root(3)(a - 1) + root(3)(a + 1) - root(3)(a - 1))/(root(3)(a + 1) + root(3)(a - 1) - root(3)(a + 1) + root(3)(a - 1)`
`(x + 1)/(x - 1) = (2root(3)(a + 1))/(2root(3)(a - 1)`
⇒ `(x + 1)/(x - 1) = (root(3)(a + 1))/(root(3)(a - 1)`
Cubing both sides
`((x + 1)^3)/(x - 1)^3 = (a + 1)/(a - 1)`
Again apply onendo and dividendo,
`((x + 1)^2 + (x - 1)^3)/((x + 1)^3 - (x - 1)^3) = (a + 1 + a - 1)/(a + 1 - a + 1)`
⇒ `(2(x^3 + 3x))/(2(3x^2 + 1)) = (2a)/(2)`
⇒ `(x^3 + 3x)/(3x^2 + 1) = a/(1)`
⇒ x3 + 3x = 3ax2 + a
⇒ x3 – 3ax2 + 3x – a = 0
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.