Advertisements
Advertisements
प्रश्न
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
उत्तर
x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (root(3)(a + 1) + root(3)(a - 1) + root(3)(a + 1) - root(3)(a - 1))/(root(3)(a + 1) + root(3)(a - 1) - root(3)(a + 1) + root(3)(a - 1)`
`(x + 1)/(x - 1) = (2root(3)(a + 1))/(2root(3)(a - 1)`
⇒ `(x + 1)/(x - 1) = (root(3)(a + 1))/(root(3)(a - 1)`
Cubing both sides
`((x + 1)^3)/(x - 1)^3 = (a + 1)/(a - 1)`
Again apply onendo and dividendo,
`((x + 1)^2 + (x - 1)^3)/((x + 1)^3 - (x - 1)^3) = (a + 1 + a - 1)/(a + 1 - a + 1)`
⇒ `(2(x^3 + 3x))/(2(3x^2 + 1)) = (2a)/(2)`
⇒ `(x^3 + 3x)/(3x^2 + 1) = a/(1)`
⇒ x3 + 3x = 3ax2 + a
⇒ x3 – 3ax2 + 3x – a = 0
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.