Advertisements
Advertisements
प्रश्न
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
उत्तर
`(3x^4 + 5y^4)/(3x^4 - 5y^4) = (11)/(9)`
Applying componendo and dividendo
`(3x^2 + 2y^2 + 3x^2 - 2y^2)/(3x^2 + 2y^2 - 3x^2 + 2y^2) = (11 + 9)/(11 - 9)`
⇒ `(6x^2)/(4y^2) = (20)/(2)`
⇒ `(3x^2)/(2y^2)` =
⇒ `x^2/y^2 = 10 xx 2/3`
= `(20)/(3)`
`(3x^4 + 5y^4)/(3x^4 - 5y^4)`
= `((3x^4)/(y^4) + (25y^4)/(y^4))/((3x^4)/(y^4) - (25y^4)/(y^4)`
= `(3(x^2/y^2)^2 + 25)/(3(x^2/y^2)^2 - 25)`
= `(3 xx (2/3)^2 + 5)/(3(20/3)^2 - 25)`
= `(3 xx 400/9 + 25)/(3 xx 400/9 - 25)`
= `(400/3 + 25/1)/(400/3 - 25/1)`
= `((400 + 75)/(3))/((400 - 75)/(3)`
= `(475)/(3) xx (3)/(325)`
= `(19)/(13)`.
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3