Advertisements
Advertisements
प्रश्न
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
उत्तर
`(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
⇒ `((1 - x)(1 + x + x^2))/((1 + x)(1 - x + x^2)) = (62)/(63)`
⇒ `((1 + x)(1 - x + x^2))/((1 - x)(1 + x + x^2)) = (62)/(63)`
⇒ `(1 + x^3)/(1 - x^3) = (63)/(62)`
Applying componendo and dividendo,
`(1 + x^3 + 1 - x^3)/(1 + x^3 - 1 + x^3) = (63 + 62)/(63 - 62)`
⇒ `(2)/(2x^3) = (125)/(1)`
⇒ `(1)/(x^3) = (125)/(1)`
⇒ x3 = `(1)/(125)`
= `(1/5)^3`
∴ x = `(1)/(5)`.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`