Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
उत्तर
`(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Applying componendo and dividendo,
`(sqrt(a + x) + sqrt(a - x) + sqrt(a + x) - sqrt(a - x))/(sqrt(a+ x) + sqrt(a - x) - sqrt(a + x) + sqrt(a - x)) = (c + d)/(c - d)`
⇒ `(2sqrt(a + x))/(2sqrt(a - x)) = (c + d)/(c - d)`
⇒ `sqrt(a + x)/(sqrt(a - x)) = (c + d)/(c - d)`
Squaring both sides
`(a + x)/(a - x) - (c + d)^2/(c - d)^2`
Again applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = ((c + d)^2 + (c - d)^2)/((c + d)^2 - (c - d)^2`
⇒ `(2a)/(2x) = (2(c^2 + d^2))/(4cd)`
⇒ `a/x = (c^2 + d^2)/(2cd)`
⇒ x(c2 + d2) = 2acd
⇒ x = `(2acd)/(c^2 + d^2)`.
APPEARS IN
संबंधित प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`