Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
उत्तर
`(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Applying componendo and dividendo,
`(sqrt(12x + 1) + sqrt(2x - 3) + sqrt(12x + 1) - sqrt(2x - 3))/(sqrt(2x + 1) + sqrt(2x - 3) - sqrt(12x + 1) + sqrt(2x - 3)) = (3 + 2)/(3 - 2)`
⇒ `(2sqrt(12x + 1))/(2sqrt(2x - 3)) = (5)/(1)`
⇒ `(sqrt(12x + 1))/(sqrt(2x - 3)) = (5)/(1)`
Squaring both sides,
`(12x + 1)/(2x - 3) = (25)/(1)`
⇒ 50x – 75 = 12x + 1
⇒ 50x – 12x = 1 + 75
⇒ 38x = 76
⇒ x = `(76)/(38)` = 2
∴ x = 2.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.