Advertisements
Advertisements
प्रश्न
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
उत्तर
∵ a : b :: c : d
∴ `a/b = c/d`
⇒ `(2a)/(3b) = (2c)/(3d) ...("Multiply by" 2/3)`
Applying componendo and dividendo,
`(2a + 3b)/(2a - 3b) = (2c + 3d)/(2c - 3d)`
⇒ (2a + 3b)(2c – 3d)
= (2a – 3b)(2c + 3d) ...(By corss multiplication).
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.