Advertisements
Advertisements
प्रश्न
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
उत्तर
`(7"a" + 12"b")/(7"c" + 12"d") = (7"a" - 12"b")/(7"c" - 12"d")`
Applying alternendo,
`(7"a" + 12"b")/(7"a" - 12"b") = (7"c" + 12"d")/(7"c" - 12"d")`
Applying componendo and dividendo,
`(7"a" + 12"b" + 7"a" - 12 "b")/(7"a" + 12"b" - 7"a" + 12"b") = (7"c" + 12"d" + 7"c" - 12"d")/(7"c" + 12"d" - 7"c" + 12"d")`
`=> (14"a")/(24"b") = (14"c")/(24"d")`
Dividing both sides by `14/24`
`"a"/"b" = "c"/"d"`
Hence, proved.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.