Advertisements
Advertisements
प्रश्न
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
उत्तर
∵ a : b :: c : d
∴ `a/b = c/d`
⇒ `"la"/"mb" = "lc"/"md" ...("Multiply by" "l"/"m")`
Applying componendo and dividendo,
`"la + mb"/"la - mb" = "lc + md"/"lc - md"`
⇒ `"la + mb"/"lc + md" = "la - mb"/"lc - md"` ...(By alternendo)
⇒ (la + mb) : (lc + md) :: (la – mb) : (lc – md).
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.