Advertisements
Advertisements
प्रश्न
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
उत्तर
`"x"/1 = (root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")`
Applying componendo and dividendo
`("x"+ 1) /("x" - 1) = (root (3)("m + 1") + root (3)("m - 1") + root (3)("m + 1") - root (3)("m - 1"))/ (root (3)("m + 1") + root (3)("m - 1") - root (3)("m + 1") + root (3)("m - 1")`
`=> ("x"+ 1) /("x" - 1) = (2 root (3)("m" + 1))/(2 root (3)("m" - 1))`
Cubing both sides
`=> ("x" + 1)^3/("x - 1")^3 = (8 ("m + 1"))/(8("m - 1"))`
`=> ("x"^3 + 3"x"^2 +3"x" +1)/("x"^3 - 3"x"^2 + 3"x" -1) = ("m + 1")/("m - 1")`
⇒ (m - 1) (x3 + 3x2 + 3x + 1) = (m + 1 )(x3 - 3x2 + 3x - 1)
⇒ mx3 + 3mx2 + 3mx + m - x3 - 3x2 - 3x - 1 - mx3 - 3mx2 + 3mx - m + x3 - 3x2 + 3x -1
⇒ 6mx2 + 2m - 2x3 - 6x = 0
⇒ 3mx2+ m - x3 - 3x = O
⇒ x3 - 3mx2 + 3x = m
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0