Advertisements
Advertisements
प्रश्न
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
उत्तर
We have
`(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v) ...["Applying alternendo"]`
`(3x + 4y)/(3u - 4v) = (3x + 4y)/(3u - 4v)` ...[By componendo and dividendo]
`(3x + 4y + 3x - 4y)/(3x + 4y - 3x + 4y) = (3u + 4v + 3u - 4v)/(3u + 4v - 3u + 4v)`
⇒ `(6x)/(8y) = (6u)/(8v)`
⇒ `x/y = u/v`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.