हिंदी

Given that a 3 + 3 a B 2 B 2 + 3 a 2 B = 63 62 . Using Componendo and Dividendo Find a : B. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.

योग

उत्तर

We have
`(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`
App. compoenedo  and dividendo
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (63 + 62)/(63 - 62)`
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (125)/(1)`
`(a + b)^3/(a - b)^3 = (125)/(1)`
`(a + b)/(a - b) = (5)/(1)`
Again Applying Componendo & Dividendo
`(a + b + a - b)/(a + b - a + b) = (5 + 1)/(5 - 1)`
`(2a)/(2b) = (6)/(4)`
a : b = 3 : 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Ratio and Proportion - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 8 Ratio and Proportion
Exercise 1 | Q 22

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×