Advertisements
Advertisements
प्रश्न
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
उत्तर
We have
`(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`
App. compoenedo and dividendo
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (63 + 62)/(63 - 62)`
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (125)/(1)`
`(a + b)^3/(a - b)^3 = (125)/(1)`
`(a + b)/(a - b) = (5)/(1)`
Again Applying Componendo & Dividendo
`(a + b + a - b)/(a + b - a + b) = (5 + 1)/(5 - 1)`
`(2a)/(2b) = (6)/(4)`
a : b = 3 : 2
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If x = y, the value of (3x + y) : (5x – 3y) is ______.