Advertisements
Advertisements
प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
उत्तर १
Consider `x = (sqrt(a+1)+sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1)`
`=> x/1 = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`
By using componando and dividendo, we have
`=> (x + 1)/(x - 1) = ((sqrt(a + 1)+sqrt(a - 1)) + (sqrt(a + 1) - (sqrt(a - 1))))/((sqrt(a + 1) + sqrt(a - 1))-(sqrt(a + 1)-sqrt(a - 1))`
`=> (x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a-1)) = sqrt(a + 1)/sqrt(a - 1)`
Squaring both sides we get
`=> (x + 1)^2/(x - 1)^2 = (sqrt(a + 1))^2/(sqrt(a - 1))^2`
`=> (x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 1)/(a - 1)`
Again using componando and dividendo, we get
`=> ((x^2 + 2x + 1)+(x^2 - 2x + 1))/((x^2 + 2x + 1)-(x^2 -2x + 1)) = ((a + 1)+(a - 1))/((a + 1)-(a - 1))`
`=> (2x^2 + 2)/(4x) = (2a)/2 => (x^2 + 1)/(2x) = a/1`
`=> x^2 + 1 = 2ax`
`=> x^2 - 2ax + 1 = 0`
उत्तर २
`x = (sqrt(a+1)+sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1)`
⇒ ` x/1 = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`
By componendo and dividendo
`(x + 1)/(x - 1) = (sqrt(a + 1) + sqrt(a - 1) + sqrt(a + 1) - sqrt(a - 1))/(sqrt(a + 1) + sqrt(a - 1) - sqrt(a + 1) - sqrt(a - 1))`
⇒ `(x + 1)/(x - 1) = sqrt(a + 1)/sqrt(a - 1)`
⇒ `(x + 1)^2/(x - 1)^2 = sqrt(a + 1)/sqrt(a - 1)` ...(by duplicate ratio)
⇒ `(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 1)/(a - 1)`
Again by componendo and dividendo
`=> (x^2 + 2x + 1+ x^2 - 2x + 1)/(x^2 + 2x + 1 - x^2 + 2x - 1)`
= `(a + 1 + a - 1)/(a + 1- a - 1)`
⇒ `(x^2 + 1)/(2x) = a/1`
⇒ `x^2 + 1 = 2ax`
⇒ `x^2 - 2ax + 1 = 0`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`