Advertisements
Advertisements
प्रश्न
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
उत्तर
`(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
Applying componendo and dividendo
`(x^3 + 3x + 3x^2 + 1)/(x^3 + 3x- 3x^2 - 1) = (341 + 91)/(341 - 91)`
⇒ `(x + 1)^3/(x - 1)^3 = (432)/(250)`
⇒ `(x + 1)^3/(x - 1)^3 = (216)/(125)`
⇒ `(x + 1)^3/(x - 1)^3 = (6/5)^3`
⇒ `(x + 1)/(x - 1) = (6)/(5)`
⇒ 6x – 6 = 5x + 5
⇒ 6x – 5x = 5 + 6
⇒ x = 11
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.