Advertisements
Advertisements
प्रश्न
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
उत्तर
(pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd)
⇒ `"pa + qb"/"pc + qd" = "pq - qb"/"pc - qd"`
⇒ `"pa + qb"/"pc - qd" = "pq + qb"/"pc - qd"`
Applying componendo and dividendo
⇒ `"pa + qb + pa - qb"/"pa + qb - pa + qb" = "pc + qs + pc - qd"/"pc - qd - pc + qd"`
⇒ `(2pa)/(2qb) = (2pc)/(2qd)`
⇒ `a/b = c/d ...("Dividing by" (2p)/(2q))`
Hence a : b :: c = d.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If x = y, the value of (3x + y) : (5x – 3y) is ______.