Advertisements
Advertisements
प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
उत्तर
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Using componendo and dividendo,
`(sqrt(3x + 4) + sqrt(3x - 5) + sqrt(3x + 4) - sqrt(3x - 5))/(sqrt(3x + 4) + sqrt(3x - 5) - sqrt(3x + 4) + sqrt(3x - 5)) = (9+1)/(9-1)`
`=> (2sqrt(3x + 4))/(2sqrt(3x - 5)) = 10/8`
`=> sqrt(3x + 4)/(sqrt(3x -5)) = 5/4`
Squaring both sides,
`=> (3x + 4)/(3x - 5) = 25/16`
`=>16(3x + 4) = 25(3x - 5)`
`=> 48x + 64 = 75x - 125`
`=> 75x - 48x = 64 + 125`
`=> 27x = 189`
`=> x = 7`
APPEARS IN
संबंधित प्रश्न
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`