Advertisements
Advertisements
प्रश्न
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
उत्तर
Given A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]`
At = `[(2, 1),(5, 3)]`
At.B + BI = `[(2, 1),(5, 3)][(4, -2),(-1, 3)] + [(4, -2),(-1, 3)][(1, 0),(0, 1)]`
= `[(8 - 1, -4 + 3),(20 - 3, -10 + 9)] + [(4 + 0, 0 - 2),(-1 + 0, 0 + 3)]`
= `[(7, -1),(17, -1)] + [(4, -2),(-1, 3)]`
= `[(7 + 4, -1 - 2),(17 - 1, -1 + 3)]`
= `[(11, -3),(16, 2)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
Find x and y if:
`((-3, 2),(0 , 5)) ((x),(y)) = ((-5),(y))`
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA