Advertisements
Advertisements
प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
उत्तर
A2 = 9A + MI
`=>` A2 – 9A = MI ...(1)
A2 = AA
= `[(2,0),(-1,7)][(2,0),(-1,7)]`
= `[((2xx2+0xx-1) (2xx0+0xx7)), ((-1xx2+7xx-1) (-1xx0+7xx7))]`
= `[(4 0), ((-2 - 7)(0 + 49))]`
= `[(4, 0),(-9, 49)]`
Substitute A2 in (1)
A2 – 9A = ml
`=> [(4, 0),(-9, 49)] - 9[(2, 0),(-1, 7)] = m[(1, 0),(0, 1)]`
`=> [(4, 0),(-9, 49)] + [(-18, 0),(9, -63)] = [(m, 0),(0, m)]`
`=> [(-14, 0),(0, -14)]= [(m, 0),(0, m)]`
`=>` m = –14
The value of m is –14.
APPEARS IN
संबंधित प्रश्न
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If P = (8 , 5),(7 , 2) , find Pt
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is