Advertisements
Advertisements
प्रश्न
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
उत्तर
We have
A = `[(3 , 1),(-1 , 2)]`
A = `[(3 , 1),(-1 , 2)][(3 , 1),(-1 , 2)]`
= `[(9 - 1, 3 + 2),(-3 -2, -1 + 4)]`
= `[(8, 5),(-5, 3)]`
-5A = `[((-5)·3 ,(-5)·1),((-5)·(-1),(-5)·2)]`
= `[(-5 , -5),(5 , -10)]`
7I2 = `7[(1 , 0),(0 , 1)] = [(7 , 0),(0 , 7)]`
So A2 - 5A + 712
= `[(8, 5),(-5, 3)] + [(-15 , -5),(5 , -10)]+[(7 , 0),(0 , 7)]`
= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)] = [(0 , 0),(0 , 0)]`
So A2 - 5A + 7I2 = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`