Advertisements
Advertisements
प्रश्न
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
उत्तर
We have
A = `[(3 , 1),(-1 , 2)]`
A = `[(3 , 1),(-1 , 2)][(3 , 1),(-1 , 2)]`
= `[(9 - 1, 3 + 2),(-3 -2, -1 + 4)]`
= `[(8, 5),(-5, 3)]`
-5A = `[((-5)·3 ,(-5)·1),((-5)·(-1),(-5)·2)]`
= `[(-5 , -5),(5 , -10)]`
7I2 = `7[(1 , 0),(0 , 1)] = [(7 , 0),(0 , 7)]`
So A2 - 5A + 712
= `[(8, 5),(-5, 3)] + [(-15 , -5),(5 , -10)]+[(7 , 0),(0 , 7)]`
= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)] = [(0 , 0),(0 , 0)]`
So A2 - 5A + 7I2 = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d