Advertisements
Advertisements
प्रश्न
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
उत्तर
Let C = `[(a),(b)]` then
AC = B
⇒ `[(3 , 1),(-1 , 2)][(a),(b)] = [(7),(0)]`
⇒ `[(3a + b),(-a + 2b)] = [(7),(0)]`
⇒ 3a + b = 7 ...(1)
- a + 2b = 0 ...(2)
From equation (1),
6a + 2b = 14 ...(3)
From (3) - (2) given
7a = 14
⇒ a = 2
Put a = 2 in (1), we get
6 + b = 7
⇒ b = 7 - 6 = 1
∴ C = `[(2),(1)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
If A = `[(1, 1),(x, x)]`,find the value of x, so that A2 – 0
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: A2 – B2