Advertisements
Advertisements
प्रश्न
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
उत्तर
Here
X2 = X·X
= `[(4 , 1),(-1 , 2)]·[(4 , 1),(-1 , 2)]`
= `[(16 -1, 4 + 2),(-4 -2, -1 + 4)] = [(15 , 6),(-6 , 3)]`
L.H.S. = 6X - X2
= `6[(4 , 1),(-1 , 2)] - [(15 , 6),(-6 , 3)]`
= `[(24 , 6),(-6 , 12)] - [(15 , 6),(-6 , 3)]`
= `[(24 - 15, 6 - 6),(-6 + 6 , 12 - 3)]`
= `[(9 , 0),(0 ,9)]`
= `9[(1 , 0),(0 , 1)]`
= 9I = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : 3A + X = B
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.