Advertisements
Advertisements
प्रश्न
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : 3A + X = B
उत्तर
A = `[(0, -1),(1, 2)]`
B = `[(1, 2),(-1, 1)]`
3A + X = B
⇒ X = B – 3A
X = `[(1, 2),(-1, 1)] -3[(0, -1),(1, 2)]`
= `[(1, 2),(-1, 1)] - [(0, -3),(3, 6)]`
= `[(1 - 0, 2 + 3),(-1 -3, 1 - 6)]`
= `[(1, 5),(-4, -5)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
If A = `[(5, 5),(4, 0)]`, B = `[(3, 2),(1, 4)]` and C = `[(-2, 3),(2, 1)]` then matrix (A + B – C) is ______.