Advertisements
Advertisements
प्रश्न
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
उत्तर
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
A + 2x = 2B + C
`[(2, - 6),(2, 0)] + 2"X" = 2[(-3, 2),(4, 0)] + [(4, 0),(0, 2)]`
2X = `[(-6 , 4),(8 , 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
2X = `[(-6 + 4 - 2 4 + 0 + 6),(8 + 0 - 2 0 + 2 - 0)] = [(-4 , 10),(6 , 2)]`
2X = `2[(-2, 5),(3, 1)] "X" = [(-2, 5),(3, 1)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of (R + Q)P
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`