Advertisements
Advertisements
Question
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Solution
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
A + 2x = 2B + C
`[(2, - 6),(2, 0)] + 2"X" = 2[(-3, 2),(4, 0)] + [(4, 0),(0, 2)]`
2X = `[(-6 , 4),(8 , 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
2X = `[(-6 + 4 - 2 4 + 0 + 6),(8 + 0 - 2 0 + 2 - 0)] = [(-4 , 10),(6 , 2)]`
2X = `2[(-2, 5),(3, 1)] "X" = [(-2, 5),(3, 1)]`
APPEARS IN
RELATED QUESTIONS
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B