Advertisements
Advertisements
Question
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
Solution
Let A = `|("p" , "q"),("r" , "s")|_(2 xx 2)`
AI = `|("p" , "q"),("r" , "s")| |(1 , 0),(0 , 1)|`
`= |("p" + 0 , 0 + "q") , ("r" + 0, 0 + "s")|`
`= |("p" , "q"),("r" , "s")| = "A"`
IA = `|(1 , 0),(0 , 1)| |("p" , "q"),("r" , "s")|`
= `|("p" + 0 ,"q" + 0) , (0 + "r", 0 + "s")|`
`= |("p" , "q"),("r" , "s")| = "a"`
Hence proved A l = I A = A.
APPEARS IN
RELATED QUESTIONS
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.