Advertisements
Advertisements
Question
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
Solution
`[(6, 4),(3, -1)][(-1, 3)]`
The number of columns in the first matrix is not equal to the number of rows in the second matrix.
Thus, the product is not possible.
APPEARS IN
RELATED QUESTIONS
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Evaluate if possible `[(3, 2)][(2),(0)]`
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of (R + Q)P
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.