Advertisements
Advertisements
Question
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Solution
`[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = [(y),(3)]`
`=> [(-2xx (-1) + 0 xx 2x),(3xx(-1)+ 1 xx 2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2),(-3+2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(-4),(2x)] = [(2y),(6)]`
`=> -4 = 2y and 2x = 6`
`=> y = -2 and x = 3`
APPEARS IN
RELATED QUESTIONS
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.
Evaluate the following:
`|(3 , 2)| |(-1) , (3)|`
If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of (R + Q)P
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.