Advertisements
Advertisements
Question
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
Solution
`B^2 = B + 1/2 A`
`1/2 A = B^2 - B`
A = 2(B2 – B)
`B^2 = [(2, 1),(0, 1)][(2, 1),(0, 1)]`
= `[(2 xx 2 + 1 xx 0, 2 xx 1 + 1 xx 1),(0 xx 2 + 1 xx 0, 0 xx 1 + 1 xx 1)]`
= `[(4 + 0, 2 + 1) ,(0 + 0,0 + 1)]`
= `[(4, 3),(0, 1)]`
`B^2 - B = [(4, 3),(0, 1)] -[(2, 1),(0, 1)]`
= `[(4 - 2, 3 - 1),(0 - 0, 1 - 1)]`
= `[(2, 2),(0, 0)]`
∴ A = 2(B2 – B)
= `2[(2, 2),(0, 0)]`
= `[(4, 4),(0, 0)]`
RELATED QUESTIONS
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
Given `A = [(4, 1), (2,3)] and B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`, the values of x, y and z are ______.