Advertisements
Advertisements
Question
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
Solution
`[1 -2][(-2, 3),(-1, 4)]`
= `[(1 xx (-2) + (-2) xx (-1), 1 xx 3 - 2 xx 4)]`
= `[(0 , –5)]`
APPEARS IN
RELATED QUESTIONS
Evaluate `2[(-1, 0),(2, -3)] + [(3,3),(5,0)]`
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1), (1, 1)]`. Solve for matrix X:
3X + B + 2A = 0
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.