Advertisements
Advertisements
Question
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.
Options
`[(2y, 2),(0, 2(x + y))]`
`[(2x, 2(x + y)),(0, 0)]`
`[(2x, 2y),(0, 2(x + y))]`
`[(2x - 2y, 2y),(0, 0)]`
Solution
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is `underlinebb([(2x, 2y),(0, 2(x + y))])`.
Explanation:
A + B = `[(x - y, x + y),(y - x, y + x)] + [(x + y, y - x),(x - y, y + x)]`
= `[(x - y + x + y, x + y + y - x),(y - x + x - y, y + x + y + x)]`
= `[(2x, 2y),(0, 2(x + y))]`
RELATED QUESTIONS
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
X – B = A
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.
If `4[(5, x)] - 5[(y, -2)] = [(10, 22)]`, the values of x and y are ______.